
Week 2: Strings and String functions

Welcome

Back!

Quiz 1 Statistics

0

2

4

6

8

10

12

14

50 and above 40 and above 30 and above Below 30

No. of Students

No. of Students

Observations

 String formatting.

 Solution: Don‟t worry this is what we will be covering this

week.

 Use of return

 Understanding that return is a key word to return values not

store them

 Storing results

 result = int(y) + x …is correct

 int(y) + x =result ….. Is incorrect

 Generality:

 Why do we use variables?

A brief recap of Strings:

 Strings are sequences of letters or digits or special

symbols.

 Strings are our first sequence. Specifically a string is a

sequence of individual characters.

 More on the use of special symbols in Strings later.

Rules to follow for Strings

 X = „abc‟

 Y = “Hey, how are you? I‟m good.”

 Use only one type of quote, not both.

Notice that you can use either single or double quotes but

they have to be matched

 Z = “this is a bad string‟

FYI- a string of length 1 is usually called a character.

Strings and Operators

 Operators for strings are different than for numbers (i.e.

int or float)

 X = „abc‟

 Y = „ xyz ‟

print(X + Y)

print(X * 3) this is called concatenation

print(X + “.”)

/, ^, **, // are not defined with strings

An important characteristic of a String:

Length

 Since strings are sequences

“abc” is really an “ a ” followed by a “b” followed by a “ c

”

time for a new built in function

 len(“abc”)

 gives us the length of the string (also works on other

sequences we‟ll look at later)

 What use is the finding the length of a string?

Special Characters

 x = „ab\tc‟

„ \t ‟ is rendered as a tab

„ \n ‟ is rendered as a new line (i.e. a return)

 „ \\ ‟ is rendered as a backslash

„ \‟ „ is rendered as a single quote (why would you need

this?)

„ \” „ is rendered as a double quote (same reason)

 Try printing something like „This isn‟t mine, you‟re

mistaken!‟

 Is there a simpler way to avoid using special characters?

Multi Line Strings

 x = """

“hey how's it going?“

 """

Triple quotes (either single or double but not mixed)

allow for multiline strings. These strings capture new lines

and also deal well with quotes.

The Doc- String

def times_two(number):

"""

(num) -> num

times_two() takes a number and returns twice that number.

>>> times_two(5)

10

>>> times_two(3.4)

 6.8

 """

 return 2 * num

Doc-String

def times_two(number):

"""

(num) -> None

times_two() takes a number and returns twice that number.

>>> times_two(5)

10

>>> times_two(3.4)

 6.8

 """

 print(2 * num)

Welcome

Back!

A Quick Recap

 Strings are our first sequence. Specifically a string is a

sequence of individual chararacters.

 “abc”

 is really an “a” followed by a “b” followed by a “c”

 Python makes it easy for us to grab individual characters

out of a string or runs of characters

 This is called slicing and it uses the square brackets which

we have not used yet

But before that..

 A small introduction to Lists.

 Lists are a special type of „variable‟ which can store

multiple values. They are our second type of sequence.

 Denoted by []

 More on this in Week 6.

 Strings can be represented as lists too.

 This way “abc” can actually be represented as [„a‟,‟b‟,‟c‟]

Slicing

 Remember that python uses 0-indexing

 X = „abc‟

 X[0]

 gives us the first character of string X

we could also have written “abc”[0]

 we can also use

 X[1]
to get the second letter

 X[2]
to get the last letter

 Note that the highest index for a letter is 1 less than the length,
again due to 0-indexing.

Reverse Indexing

 What if I want the last letter?

 X = „abc‟

X[len(X) - 1]

 will work just fine but python also gives us an easier way

 X[-1]

 using a negative number starts at the end and counts

backwards through the string

 Practice Question: How would I get the middle letter of

“ Computer Science”? Hint: Use len()

A Visual Representation

Sequence Runs
 What if I want a run of letters? Again not hard but we need new

syntax- [start:end]

X = „abc‟

X[0:2]

will give us “ab”

 Notice that the run includes the start index but stops before the end
index

so

 X[0:len(X)]
gives us the entire string. But again python has given us a short cut if we leave the
start blank it will start at the beginning and if we leave the end blank it will end at
the end of the string.

X[:2]

X[1:]

 Questions?

 Slicing always returns a new string

so “abc”[:2] + “xyz”[:1]

works fine.

 Slicing takes a little time to get comfortable with but is

amazingly handy.

 It has a new notation but you use exactly the same

notation with other sequences (lists, tuples, dictionaries-

all data structures in python)

String Methods

 Methods are functions associated with a specific object or

type. They are normally called using the dot operator(?)

 Strings have lots of useful methods:

upper(), lower()

isupper(), islower(), isnumeric(), isalpha()

capitalize()

strip(), lstrip(), rstrip()

split()

lots more…

String Methods

 To use a string method you can call it like this:

„abc‟.upper()

or equivalently

X = „abc‟

X.upper()

 in the second case did we change X?

String Constants
 In addition to the methods, strings have a number of constants.

However these constants are not built in, we need to import them.

import string #orange? New keyword, score!

print(string.ascii_letters)

other constants:

ascii_lowercase

ascii_uppercase

punctuation

digits

hexdigits

octdigits

 we‟ll talk more about import tomorrow

Some Cheesy Practice

 What do these do?

 X = „Python‟

 str1 = X[0]

 str2 = X[1:]

 print(str2.capitalize() + str1.lower())

 print(str1)

 print(str2[-1])

Welcome Back!

Importing

 Libraries are nothing more than a bunch of code written

for you that you can import and use in your own

programs without having to credit the original authors.

 Hey, who doesn‟t like free stuff?

Ways to Import

 two methods, they work slightly different in terms of how

you then use the imported code. Assume we have a

library called foo which has a function called bar().

 Method 1:

import foo

foo.bar()

 With this method any function you call from foo has to

have “foo.” appended to the front so python knows where

to find the function. The import lets python know that

foo.py exists

The other Method

 Method 2:

from foo import *

bar()

 With this method we can directly call any function in foo

as if it were a built in function. The import pulls all the

code in foo into the current project.

Why do we need two methods?

 Method 2 seems more convenient so why have 2 methods?

Imagine we have a library foo that has a function called bar() but
we also have a library foo2 that has a different function called
bar().

Method 1 allows us to use both bar functions calling them
through

foo.bar()

and

foo2.bar()

Method 2 will overwrite the first bar you import with the
second, you can only use one of them.

Hence for larger projects where you may have dozens of
libraries and name collisions are not unlikely the first method is
much safer.

Turtle

 Jokes apart, turtle graphics is one of the fun parts of

Python.

 Based upon legacy programming language called Logo.

 Uses a relative cursor aka the „turtle‟ upon a cartesian

plane.

 A simple code to demo the use of a turtle

import turtle

turtle.forward(20)

What does this do?

What is the orientation of the „turtle‟?

That’s cool, but what else can it do?

 fd(), bk() move forward, back

 lt(), rt() turn left, right

 color() change drawing color

 begin_fill(), end_fill() fill in closed polygons

 reset() reset the canvas

 bye() close the canvas

 shape() change appearance of the turtle

 stamp() stamp the turtle shape on the

 canvas

 setpos() move to certain coordinates

So how do we use it?

 Remember what we did with String methods?

 The use is similar, only in this case the object is the

turtle.

 Hence, turtle.method_name() will invoke the method for

that turtle object.

Question time!

 Using the turtle how would you draw a square?

 Well ok that was simple, can we try and break that down

in to certain substeps? Maybe that would repeat?

 Ok seems like you guys came prepared today….go

squirtle!!

 Try making a triangle?

Important point

 Something you shouldn‟t do while saving your Turtle

program is save it as “turtle.py”.

 Why?

Welcome Back!

More on Turtle Functions

 turtle.pencolor(‹color›):
 Sets pen color. Example: turtle.pencolor('green')

 turtle.speed(‹speed›)
 Set turtle drawing speed; 1 is slow, good for debugging
 through 9, fast; 0 is fastest, but does not show the turtle.

 turtle.pendown()
 Turtle leaves a visible trail - pen is down touching screen.

 turtle.penup()
 pen is lifted and does not leave a trail

 turtle.shape(name=None)
 there are the following polygon shapes: “arrow”, “turtle”,
 “circle”, “square”, “triangle”, “classic”

 turtle.fillcolor(‹color›)
 Sets fill color.

 turtle.color(‹pencolor›,‹fillcolor›)
 Sets both pen color and fill color.

 turtle.begin_fill()
 Turtle moves now begin to define an area for eventual fill.

 turtle.end_fill()
 Turtle has now finished defining a fill area; area fills with color.

Typical sequence to create a color fill:
turtle.fillcolor('yellow') # then

turtle.begin_fill()

do some drawing such as a square or some other figure

turtle.end_fill() # Now you see the fill color

Turtle Position methods
 turtle.goto(‹x›, ‹y›)

 Move turtle to the position x over, y down.

 turtle.pos()
 Return the x,y position of the turtle.

Example:

tp = turtle.pos()

print(tp) # (20.0, 40.0) for example

 Both of these methods have something to do with positional
coordinates, what‟s the difference?

 What would be the output of turtle.goto(turtle.pos())?

 Would the reverse work as well? Why?

Helper Functions

 Remember when I asked you to break down the drawing

of a square into repeatable steps?

 Helper functions allow us to do that.

 This is essentially an abstraction on a smaller scale of the

practice of breaking the problem into sub-problems.

 So, can we break down the drawing of a square into

repeated calls to a helper function?

An example
import turtle

def line_and_turn(length, angle):

 turtle.fd(length)

 turtle.rt(angle)

def square(size):

 line_and_turn(size, 90) #do we need a left

 line_and_turn(size, 90) turn version of line

 line_and_turn(size, 90) and turn?

 line_and_turn(size, 90)

def triangle(size):

 line_and_turn(size, 60) #is triangle()

 line_and_turn(size, 60) correct?

 line_and_turn(size, 60)

Group exercise:

 Can you think of a helper function using the other turtle

methods?

 Write a helper function for drawing a square and coloring

it with a given color.

 Hint: color_square(square_size,square_color)

 How much easier would it be to use the square function?

A Quick Reminder

All Projects are due at 5:00 pm today.

Test tomorrow will cover String Methods and turtle

graphics.

You will be allowed to use IDLE (like, d-uh!) as well as the

Turtle reference that is present online.

